
implies that there is specific transannular monoenediene interaction ${ }^{7}$ in $\mathbf{1 c}$ as in $\mathbf{1 2 c}$ leading to 13 c .

Rearrangement of bicyclo[4.2.1]nona-2,4,7-trien-9-yl cations has been extended to acid catalyzed elimination of syn-9-hydroxy-9-methylbicyclo[4.2.1]nona-2,4,7-triene (19) ${ }^{8}$ and isomerization of 9 -methylenebicyclo[4.2.1]-nona-2,4,7-triene (10). Alcohol 19 was prepared (86% yield) from 16 and methylmagnesium bromide at 0° and subsequent acidification; 20 was obtained (77%

20
yield) from 16 and methylenetriphenylphosphorane in dimethyl sulfoxide at 74°. Dehydration of 19 and isomerization of 20 by p-toluenesulfonic acid in benzene at 74° give 2 -methylindene ($14 \mathrm{~d},>80 \%$ yields); 1 -methylindene (9d) and 3-methylindene (10d) were not detectable in these experiments by sensitive gas chromatographic methods. The conversions of 19 and 20 to $14 d$ are analogous to that of $\mathbf{1 7}$ to $\mathbf{1 4 c}$ and indicate that the 9 -methylbicyclo[4.2.1]nona-2,4,7-trien-9-yl cation (1d) rearranges by a specific bridging mechanism as in eq 2. The cationic conversion of $\mathbf{2 0}$ to $\mathbf{1 4 d}$ reveals also that there is no formal initial stereochemical requirement at C-9 for entry into the rearrangement system of eq $2 .{ }^{9}$ It is noted further that the previous exclusive conversion of 15 by p-toluenesulfonic acid to 2 -phenylindene ($\mathbf{1 4 b})^{\text {2b }}$ and the pyrolyses of syn-9-acetoxy-9-methylbicyclo[4.2.1]nonatriene and $s y n-9$-benzoyloxy-9-phenylbicyclo[4.2.1]nonatriene at 184° in o-dichlorobenzene to 14 d and to $\mathbf{1 4 b}$, respectively, ${ }^{2 c}$ are now understandable via the reaction path of eq 2 .

What is not yet definitive, however, are the structural and environmental factors which allow bicyclo[4.2.1]-
(7) The physical constants of all intermediates and products compare favorably with literature values. The deuterium contents ($\sim 100 \%$) of all labeled materials were confirmed by mass spectral and nmr methods.
(8) Alcohol 19 is identical with that prepared previously from dilithium cyclooctatetraenide and acetyl chloride and hydrolysis. ${ }^{2 a}$
(9) The importance of hybridization at $\mathrm{C}-9$ and the shape of bicyclo-[4.2.1]nona-2,4, 7 -triene systems is also indicated by the recent observations that, based on photoelectron spectra, there is considerable interaction of the π systems in 20 but none in bicyclo[4,2.1]nona-2,4,7-triene: M. T. Reetz, R. W. Hoffmann, W. Schäfer, and A. Schweig, Angew. Chem., 85, 45 (1973).
nona-2,4,7-trien-9-yl cationic reactions to occur via rearrangement processes as in eq 1. A major fact yet to be determined is whether sequences which begin as in eq 2 give products which presently appear to have been derived via eq 1. Based on the present information, however, it may be that bicyclo[4.2.1]nona-2,4,7-trien- 9 -yl cations, stabilized by electron-donor delocalizing groups at C-9 and possibly by solvent interaction at $\mathrm{C}-9$ from the sterically available anti direction, do not bring out sufficient monoene-diene interaction from below as in 12, and thus migration of $\mathrm{C}-2$ or C- 5 of the diene bridge to C-9 becomes the effective entry to cis-8,9-dihydroindenyl derivatives.

Acknowledgment. We should like to thank the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

David C. Sanders, Harold Shechter*
Chemistry Department, The Ohio State Untiversity Columbus, Ohio 43210
Received June 22, 1973

An Extension of the Nitrosyl-Aryldiazo Analogy. The Structure of an Aryldiazo Group Coordinated to Rhodium in a Doubly Bent Fashion

Sir:
Since the first unequivocal structural evidence for a bent $\mathrm{M}-\mathrm{N}-\mathrm{O}$ linkage in transition metal chemistry was presented, ${ }^{1}$ chemical and structural interest in these systems has expanded rapidly. A recent tabulation ${ }^{2}$ includes eight transition metal nitrosyl complexes out of 52 in which the $\mathrm{M}-\mathrm{N}-\mathrm{O}$ angle is between 120 and 128°. The analogy between NO^{+}(linear $\mathrm{M}-$ $\mathrm{N}-\mathrm{O})$ and $\mathrm{RN}_{2}+(\mathrm{R}=$ aryl $)$ on the one hand and between $\mathrm{NO}^{-}\left(\mathrm{M}-\mathrm{N}-\mathrm{O}\right.$ angle, $\left.120^{\circ}\right)$ and $\mathrm{RN}_{2}-$ on the other is an obvious one and suggests that the aryldiazo ${ }^{3}$ ligand has the same amphoteric nature as does nitric oxide. We wish to report the first structural
(1) D. J. Hodgson, N. C. Payne, J. A. McGinnety, R. G. Pearson, and J. A. Ibers, J. Amer. Chem. Soc., 90, 4486 (1968); D. J. Hodgson and J. A. Ibers, Inorg. Chem., 7, 2345 (1968).
(2) B. A. Frenz and J. A. Ibers, MTP (Med. Tech. Publ. Co.) Int. Rev. Sci., Phys. Chem., 11, 33 (1972).
(3) Consistent with the nomenclature proposed for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NNH}_{\text {, }}$ phenyldiazene, and with that for $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{NN}^{+}$, phenyldiazonium ion, we adopt the names phenyldiazeno, instead of phenyldiimido, and phenyldiazo, instead of phenylazo, when these moieties are coordinated to a metal; phenyldiazo is used for both forms, $\mathrm{RN}_{2}{ }^{+}$and $\mathrm{RN}_{2}{ }^{-}$. See E. M. Kosower, Accounts Chem. Res., 4, 193 (1971).

Figure 1. A perspective view of the inner coordination geometry of $\left[\mathrm{Rh}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2}\right) \mathrm{Cl}\left(\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+}$. The methylene carbon atoms of the tridentate chelate ligand have been omitted for clarity. Estimated standard deviations on bond distances are Rh-P, 0.004; $\mathrm{Rh}-\mathrm{Cl}, 0.003 ; \mathrm{Rh}-\mathrm{N}, 0.008 ; \mathrm{N}-\mathrm{N}, 0.02$; and $\mathrm{N}-\mathrm{C}, 0.01 \AA$. Estimated error in the angles is 1.0° in both cases.
example of the aryldiazo analog of NO^{-}, in which the $\mathrm{M}-\mathrm{N}-\mathrm{N}-\mathrm{R}$ linkage is doubly bent, II. The four previously determined aryldiazo structures all show singly bent diazo linkages, corresponding to $\mathrm{RN}_{2}{ }^{+}$. ${ }^{4-7}$

Ia

Ib

II

The preparation of complexes of the type [$\mathrm{RhLCl}-$ $(\mathrm{X})]^{+}$, where $\mathrm{L}=\mathrm{PhP}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)_{2}$, has been described. ${ }^{8}$ When $\mathrm{X}=\mathrm{NO}$, a bent $\mathrm{Rh}-\mathrm{N}-\mathrm{O}$ linkage ($\mathrm{M}-\mathrm{N}-\mathrm{O}$ angle $=131^{\circ}$) is found ${ }^{8}$ corresponding formally to NO^{-}bonded to $\mathrm{Rh}(\mathrm{III})$. The analogous complex with $\mathrm{X}=\mathrm{N}_{2} \mathrm{Ph}$ has been prepared ${ }^{8}$ as the $\mathrm{PF}_{6}{ }^{-}$salt, and its structure was determined. The material crystallizes in space group $C_{1}{ }^{1}-P \overline{1}$ with two formula units of the complex and two solvent molecules, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, in a cell of dimensions $a=12.675$ (7), $b=13.254$ (7), $c=$ 15.092 (10) $\AA ; \alpha=94.78$ (5), $\beta=99.46$ (5), $\gamma=$ $112.40(8)^{\circ}$; and $V=2282.3 \AA^{3}$. Observed and calculated densities are 1.50 (1) and $1.506 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. At the present stage of least-squares refinement

[^0]based on 4031 absorption corrected data, the R index is 0.072 . A difference Fourier map clearly reveals all of the 44 hydrogen atoms.

The geometry of the inner coordination sphere is approximately square pyramidal with the phenyldiazo group occupying the apical position (Figure 1). The apical ligand is formulated as phenyldiazo rather than phenyldiazene ${ }^{9}$ since the region surrounding the nitrogen atoms is devoid of significant electron density within a radius of $1.7 \AA$. Spectral evidence also supports this formulation. The infrared spectrum shows neither an $\mathrm{Rh}-\mathrm{H}$ nor an $\mathrm{N}-\mathrm{H}$ stretching band. ${ }^{9}$ The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of both the ${ }^{14} \mathrm{~N}={ }^{14} \mathrm{NPh}$ and ${ }^{15} \mathrm{~N}=$ ${ }^{14} \mathrm{NPh}$ complexes show no evidence for either a hydride ligand attached to Rh or for a proton attached to $\mathrm{N}(1)$. However, treatment of the unlabeled material with HCl results in a broad resonance at $\tau-2.8$, indicative of protonation of a nitrogen atom.

The bonding in the tetragonal plane agrees with that found in the corresponding nitrosyl complex. ${ }^{8}$ The stereochemistry about the $\mathrm{N}-\mathrm{N}$ bond is trans. The $\mathrm{Rh}-\mathrm{N}(1)$ distance is approximately equal to that in the corresponding nitrosyl complex ${ }^{8}$ and is considerably longer than the $\mathrm{M}-\mathrm{N}$ distances in a number of singly bent aryldiazo complexes. ${ }^{4-7}$ The $\mathrm{M}-\mathrm{N}$ distances in aryldiazo complexes are thus consistent with comparable data on NO^{+}and NO^{-}complexes. ${ }^{2}$ The bond angle of 125° at $\mathrm{N}(1)$ completes the a nalogy with the bonding in NO^{-}, and suggests formulation of the complex as $\mathrm{Rh}^{1 I I}\left(\mathrm{~N}_{2} \mathrm{Ph}^{-}\right)$. These results seem to confirm the suggestion ${ }^{9-14}$ that certain aryldiazonium complexes of Rh, Ir, and Pt possess doubly bent aryldiazo groups.
The infrared spectrum of the complex (Nujol mull, KBr pellet) shows, in addition to absorptions arising from $\mathrm{PF}_{6}{ }^{-}$and RhLCl , two bands at 1627 (m) and $1561(\mathrm{~m}) \mathrm{cm}^{-1}$ which persist in solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The infrared spectrum of $\left[\operatorname{RhLCl}\left({ }^{3} \mathrm{~N}={ }^{14} \mathrm{NPh}\right)\right]\left[\mathrm{PF}_{8}{ }^{-}\right]$ is identical with that of the unlabeled material except that these two bands are shifted to lower energy by 14 and $12 \mathrm{~cm}^{-1}$, respectively, and are thus associated with the $-\mathrm{N}=\mathrm{N}$ - linkage. The origin of the two frequencies associated with the $-\mathrm{N}=\mathrm{N}$ - linkage is not known with certainty. However, two absorption bands are frequently observed in complexes which exhibit lower values of $\nu(\mathrm{NN})$, see Table I.

There are inadequacies in using the $\mathrm{N}-\mathrm{O}$ stretching frequency to diagnose the mode of nitrosyl coordination to a transition metal because of the large overlapping region ($1600-1720 \mathrm{~cm}^{-1}$) between NO^{+}and NO^{-}complexes. ${ }^{15}$ Based on accumulated data on transition metal-NO geometries, ${ }^{2}$ we put forward the following empirical rules to bring the various NO stretching frequencies to a common scale: (1) subtract $50 \mathrm{~cm}^{-1}$ for first-row metals and $30 \mathrm{~cm}^{-1}$ for second-row metals; (2) subtract $80 \mathrm{~cm}^{-1}$ for singly charged and $140 \mathrm{~cm}^{-1}$ for doubly charged cationic complexes; (3) add 40 or
(9) K. R, Laing, S. D. Robinson, and M. F. Uttley, J. Chem. Soc., Chem. Commun., 176 (1973).
(10) B. L. Haymore and J. A. Ibers, J. Amer. Chem. Soc., 95, 3052 (1973).
(11) G. W. Parshall, J. Amer. Chem. Soc., 89, 1822 (1967); 87, 2133 (1965).
(12) S. Cenini, R. Ugo, and G. LaMonica, J. Chem. Soc. A, 3441 (1971).
(13) A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1128 (1969).
(14) M. C. Baird and G. Wilkinson, J Chem. Soc. A, 865 (1967).
(15) D. M. P. Mingos and J. A. Ibers, Inorg. Chem., 10, 1479 (1971).

Table I

Compound ${ }^{\text {a }}$	Geometry ${ }^{\text {b }}$	$\nu(\mathrm{NN})^{c}$	$\nu^{\prime}(\mathrm{NN})^{d}$
$1 \mathrm{OsBr}_{3} \mathrm{P}_{2} \mathrm{~L}^{e, j}$		1850	1850
II $\mathrm{RuCl}_{3} \mathrm{P}_{2} \mathrm{~L}^{e,}{ }^{\text {a }}$	$\mathrm{Ia} \leftrightarrow \mathrm{Ib}^{\circ}$	1882	1852
III [$\mathrm{RhClP}_{2} \mathrm{~L}$] $\left[\mathrm{PF}_{6}\right]^{h}$		1899	1789
IV [$\left.\mathrm{IrClP}_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right]^{0}$		1868	1788
$\mathrm{V}\left[\operatorname{Ir}(\mathrm{PP})_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right]_{2}{ }^{h}$		1697	1627
		1651	1611
VlI $\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}_{2} \mathrm{~L}\right]\left[\mathrm{BF}_{4}\right]^{i, j, k}$	Ib^{k}	1723	1593
VIIII [$\left.\mathrm{RhCl}\left(\mathrm{PPh}_{2} \mathrm{CH}_{3}\right)_{3} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right]^{h, l}$		1653	1583
IX $\mathrm{RhCl}_{2} \mathrm{P}_{2} \mathrm{~L}^{e, \%}$		$\begin{aligned} & 1614 \\ & 1549 \end{aligned}$	1551
$\mathrm{X}[\mathrm{RhCl}(\mathrm{PPP}) \mathrm{L}]\left[\mathrm{PF}_{6}\right]^{m}$	II	$\begin{aligned} & 1627 \\ & 1561 \end{aligned}$	1524
XI $\mathrm{IrCl}_{2}(\mathrm{CO}) \mathrm{P}_{2} \mathrm{~L}^{g}$		1464	1464
XII $\left[\operatorname{IrCl}(\mathrm{PP})_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right]^{h}$		$\begin{aligned} & 1463 \\ & \sim 1440 \end{aligned}$	1442
XIII $\left[\mathrm{RhCl}(\mathrm{PP})_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right]^{h}$		$\begin{gathered} 1493 \\ 1466 \end{gathered}$	1440
XIV $\mathrm{PtCl}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{~L}^{n}$		1440	1440
XV $\mathrm{RuCl}(\mathrm{CO})_{2} \mathrm{P}_{2} \mathrm{~L}^{\hbar}$		1455	1425

${ }^{a}$ Key: $\mathrm{Ph}=\mathrm{C}_{6} \mathrm{H}_{\mathrm{j}}, \mathrm{Et}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{~L}=\mathrm{PhN}_{2}, \mathrm{P}=\mathrm{PPh}_{3}, \mathrm{PP}=$ $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)_{2}, \mathrm{PPP}=\operatorname{PhP}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$. ${ }^{b}$ Crystal structure of compound or closely related one is known. ${ }^{c}$ Frequencies given as cm^{-1}. ${ }^{d}$ When two frequencies are observed, the average is taken in computing this value. 'Reference 9. 'S. D. Robinson, private communication. ${ }^{\bullet}$ Reference $10 .{ }^{h}$ Reference 7. ${ }^{i}$ F. J. Lalor, private communication. ${ }^{i} \mathrm{D}$. Sutton, private communication. ${ }^{k}$ Spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of analytically pure samples of [$\left.\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{P}_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right]$ show three $\nu(\mathrm{CO})$'s at 2080, 2051, and 1995 and three $\nu(\mathrm{NN})$'s at 1681,1607 , and 1556 indicating the presence of either two different compounds or two stereochemical forms of the same compound. ${ }^{l}$ Reference 14. ${ }^{m}$ Reference 8. ${ }^{n}$ Reference 11; $\left[\mathrm{PtP}_{3} \mathrm{~L}\right]^{+}$and $\mathrm{PtIP}_{2} \mathrm{~L}$ were omitted because the assigned values for $\nu(\mathrm{NN})$ were not substantiated by isotopic substitution and because the reported values are in sharp contrast to those for XIV: see ref 12 . \circ Reference 6.
$70 \mathrm{~cm}^{-1}$ for complexes with three or four tertiary phosphines, respectively. These rules, which are primarily applicable to diamagnetic complexes of group VIII metals, ${ }^{16}$ greatly reduce the region of overlap noted above. Several of the complexes whose modified values of $\nu(\mathrm{NO})$ fall in or near the region of overlap may exhibit an intermediate $\mathrm{M}-\mathrm{N}-\mathrm{O}$ geometry.

If we apply these rules to the observed values of $\nu(\mathrm{NN})^{17}$ in phenyldiazo complexes of group VIII metals, we obtain (Table I) the modified frequencies, $\nu^{\prime}(\mathrm{NN})$. The Ph_{2} complexes then fall into three groups except for IX which is a borderline case: (A) those with values of $\nu^{\prime}(\mathrm{NN})$ lower than $1540-1560 \mathrm{~cm}^{-1}$ corresponding to the doubly bent geometry (II); (B) those with values between 1540-1560 and 1700-1740 cm^{-1} corresponding to the singly bent geometry (Ib); (C) those with values greater than $1700-1740 \mathrm{~cm}^{-1}$ corresponding to the singly bent geometry, but tending toward the totally linear case (Ia). Despite the relatively small number of diazo complexes known, the proposed empirical rules seem to be useful in categorizing these complexes into three groups. When more diazo complexes are found, we anticipate that $\nu^{\prime}(\mathrm{NN})$ will be more useful than $\nu(\mathrm{NN})$ in characterizing the mode of diazo coordination. In the above, we have considered what appear to be the three most important canonical structures contributing to the ground states of the phenyldiazo ligand; we have ignored those canonical formulations involving reduced forms for the phenyl ring.

[^1]Acknowledgment. This work was kindly supported by the National Science Foundation. We are indebted to Matthey-Bishop, Inc. for the loan of some of the precious metals used in this study.

Arthur P. Gaughan, Jr., Barry L. Haymore, James A. Ibers* Department of Chemistry, Northwestern University Evanston, Illinois 60201
William H. Myers, Thomas E. Nappier, Jr., Devon W. Meek Department of Chemistry, The Ohio State University Columbus, Ohio 43210
Received May 24, 1973

Novel Nonphenol Oxidative Coupling ${ }^{1}$

Sir:
Oxidative coupling of phenols as a mode of carboncarbon bond formation holds a prominent position in the biosynthesis and synthesis of complex alkaloids and other polycyclic compounds. ${ }^{2,3}$ Recent reports have also described efficient intramolecular coupling in monophenolic compounds. ${ }^{4,5}$ Although the electrooxidative coupling of nonphenolic substrates has been reported, prior attempts to effect chemical coupling of such substrates have apparently been unsuccessful. ${ }^{6}$ We wish to report herewith the smooth intermolecular and intramolecular coupling of nonphenolic benzylisoquinolines upon treatment with vanadium oxytrifluoride. The usefulness of the novel reaction is exemplified by the efficient synthesis of the unusual spirodienone 10, an Erythrina alkaloid precursor.

Papaverine (1), a readily available nonphenolic alkaloid, was a convenient starting material for the initial studies. Based on our previous experience, ${ }^{5} \mathrm{VOF}_{3}$ in trifluoroacetic acid (TFA) was chosen as the oxidizing system. In the event, a surprisingly facile reaction ensued which afforded an 80% yield of the aryl-to-aryl intermolecularly coupled product, $2:^{7} \mathrm{mp} 180-182^{\circ}$; uv $\lambda_{\text {max }}^{\text {EtOH }}(\log \epsilon) 239(5.06), 284$ (4.14), 314 (3.85), 328 (3.91) nm; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}-3)$, 7.23 (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}-4), 6.93$ (s, 4 ArH), 6.72 (s, 2 ArH), 6.50 (s, 2 ArH), 4.23 (s, $4 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}^{\prime}$), $3.91,3.79,3.70,3.50$ (each s, all $6 \mathrm{H}, 8-\mathrm{OCH}_{3}$); mass spectrum m / e (\%) 676 (19, M^{+}), 475 (100). Assignment of the $6^{\prime}-6^{\prime}$ linkage in the structure of the dimer, favored by analogy to the products of other reactions of papaverine, ${ }^{8}$ was confirmed by oxidation to the tetramethoxydiphenic acid 3. ${ }^{9-11}$

[^2]
[^0]: (4) V, F. Duckworth, P. G. Douglas, R. Mason, and B. L. Shaw, Chem. Commun., 1083 (1970),
 (5) G. Avitabile, P. Ganis, and M. Nemiroff, Acta Crystallogr., Sect. B, 27, 725 (1971).
 (6) J. A. McArdle, A. J. Schultz, B. J. Corden, and R. Eisenberg, Inorg. Chem., 12, 1676 (1973). We are indebted to Professor Eisenberg for a preprint of that work.
 (7) B. L. Haymore and J. A. Ibers, unpublished results. An independent determination of the structure of the Ru aryldiazo complex is in good agreement with the results of McArdle, et al. (ref 6).
 (8) T. E. Nappier, Jr., D. W. Meek, R. M. Kirchner, and J. A. Ibers, J. Amer. Chem. Soc., 95, 4194 (1973).

[^1]: (16) Similar rules for group VIb and VIIb metals can be formulated.
 (17) $\nu(\mathrm{NN})$ refers to the frequency(s) arising from the diazo linkage as established by ${ }^{16} \mathrm{~N}$ substitution.

[^2]: (1) This investigation was supported by grants from the National Cancer Institute (CA-12059 and CA-11760).
 (2) W. I. Taylor and A. R. Battersby, Ed., "Oxidative Coupling of Phenols," Marcel Dekker, New York, N. Y., 1967.
 (3) T. Kametani and K. Fukumoto, Synthesis, 657 (1972).
 (4) M. A. Schwartz, B. F. Rose, and B. Vishnuvajiala, J. Amer. Chem. Soc., 95, 612 (1973).
 (5) S. M. Kupchan and A. J. Liepa, ibid., 95, 4062 (1973).
 (6) L. L. Miller, F. R. Stermitz, and J. R. Falck, ibid., 95, 2651 (1973); cf. D. H. R. Barton, Proc. Chem. Soc., London, $293{ }^{\prime \prime}(1963)$.
 (7) All new compounds were characterized by concordant analytical and spectral data.
 (8) Cf. P. Mathieu and J. Gardent, C. R. Acad. Sci., Ser. C, 1416 (1968).
 (9) Reduction of the dimer 2 with $\mathrm{Zn}-40 \%$ aqueous HOAc at 90° to the bistetrahydro derivative was followed by $\mathrm{CH}_{3} \mathrm{I}$ methylation and Hofnaann degradation to the bismethine. ${ }^{10}$ Oxidation with aqueous KMnO_{4} yielded a crude dialdehyde, which was oxidized with $\mathrm{KMnO}_{4}-$ acetone to the diacid 3: mp $251-254^{\circ}$ (lit. ${ }^{11} \mathrm{mp} 251-253^{\circ}$); mass spectrum $m / e(\%) 362\left(80, \mathrm{M}^{+}\right), 344(48), 317(100)$.

